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Abstract

In this paper, the vertical acceleration response of a simple beam traveled by a series of equally spaced
moving loads at constant speeds is studied by the superposition method. From the closed-form solution
derived, the key parameters dominating the resonant response of the beam are identified, along with the
effect of higher modes of vibration on the acceleration response investigated. For the loads moving at
resonant speeds, the higher modes can have significant influence on the acceleration amplitude. This is true
especially for beams with light damping, for which the maximum acceleration on the beam depends on
which vibration mode is excited. As such, the maximum acceleration of the beam need not occur at the mid-
point. By considering the resonant speeds associated with the first and second modes, a simplified formula
is proposed for checking whether the maximum acceleration may occur at the mid-point of the beam. For
the case when the structural damping is taken into account, the contribution of higher modes to the
acceleration response tends to be damped out. It is concluded that for a beam properly damped, the
maximum acceleration response of the beam is dominated by the fundamental vibration mode.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

With the advancement of related technologies, the operation speed of modern trains has
increased from time to time. This has stimulated a huge amount of researches, especially of the
see front matter r 2005 Elsevier Ltd. All rights reserved.
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theoretical nature, on the dynamic behaviors of railway bridges under the passage of high-speed
trains [1–7]. Particularly, the phenomenon of vehicle-induced resonance has drawn attention from
researchers, due to the fact that it may create drastic amplification on the dynamic response of the
track structure and cause problems such as ballast destabilization and excessive vibrations of
trains at high speeds [1,2,7]. For the purpose of track maintenance, it is recommended that the
phenomenon of train-induced resonance be totally avoided from the beginning of design for a
railway bridge. To this end, theories that can accurately predict the phenomenon of resonance for
the problem of a beam subjected to a series of moving loads at high speeds should be developed.
In the book on vehicle–bridge interaction dynamics recently published by Yang et al. [8], a total

of 167 references were cited. No attempt is made herein for a comprehensive review of all the
related works. Specifically, this paper will be focused on the effect of higher modes of vibration on
the resonant response of a simple beam to a series of moving loads.
In studying the fundamental problem of train-induced vibrations on bridges, a bridge was often

modeled as a simply supported beam and a train as a series of moving loads with regular intervals.
In the studies by Yang et al. [3,6], the mechanism of resonance for the train-induced vibration of
railway bridges have been identified, both by theoretical and experimental means. These studies
indicated that whenever the excitation frequency implied by the moving loads coincides with any
of the bridge frequencies, the phenomenon of resonance will be developed on the bridge. By
taking the effect of damping of the bridge into account, Li and Su [4] dealt with the fundamental
characteristics and dominant factors for the resonant response of a girder bridge under high-speed
trains. Furthermore, Yau et al. [5] proposed an envelope impact formula for the deflection of a
damped beam with elastic bearings to a series of equally spaced moving loads. Savin [2]
formulated an analytical expression of the dynamic amplification factor and response spectrum
for the beams with various boundary conditions under the action of successive moving loads.
Previously, the resonant response associated with the fundamental bending mode was studied

for the mid-point of a simple beam under a series of moving loads [3]. Recently, it was pointed out
by Museros [7] by a numerical approach that the second bending mode may also have some
influence on the resonant response of some high-speed railway bridges, and for some cases the
maximum response may not occur at the mid-point. Unfortunately, no further details were
proposed for determining whether the maximum acceleration will occur at the mid-point or not.
In the present study, a general solution for the vertical acceleration of a simple beam subjected

to successive moving loads is derived by an analytical approach. It is indicated that for a beam
with light damping, higher modes of vibration should be considered in computing the acceleration
of the beam, and that the critical position for the maximum acceleration response to occur on the
beam relates to the vibration mode that has been excited. In this regard, a simplified formula was
derived for identifying whether the maximum acceleration will occur at the mid-point or not. In
addition, the effect of damping that tends to reduce the contribution of higher modes to the
acceleration of the beam will also be illustrated.
2. Formulation of the theory

With reference to Fig. 1, consider a simply supported beam of length L, subjected to a sequence
of wheel loads p with constant interval d moving at speed v. Assume that there are K wheel loads
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Fig. 1. Simply supported beam subjected to uniform moving loads.
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acting simultaneously on the beam, and that the first ðN � 1Þ wheel loads have left the beam. The
equation of motion for the beam traversed by such moving loads is [5]

m €u þ c _u þ EIu0000 ¼ p
XNþK�1

k¼1

d½x � vðt � tkÞ� 	 ½Hðt � tkÞ � Hðt � tk � L=vÞ�, (1)

where a prime denotes derivative with respect to the coordinate x, an overdot with respect to time
t;m is the mass per unit length, uðx; tÞ the vertical displacement, c the damping coefficient, E the
elastic modulus, I the moment of inertia of the beam, d the Dirac’s delta function, HðtÞ the unit
step function, N the Nth moving load on the beam, and tk ¼ ðk � 1Þd=v the arriving time of the
kth load at the beam. In Fig. 1, vtE denotes the travel distance of the Nth load along the beam
axis. Accordingly, the boundary conditions of the beam are

uð0; tÞ ¼ uðL; tÞ ¼ 0,

EIu00ð0; tÞ ¼ EIu00ðL; tÞ ¼ 0. (2a,b)

Let us assume that the beam starts to vibrate from rest upon the arrival of the first moving load.
The initial conditions are

uðx; 0Þ ¼ _uðx; 0Þ ¼ 0. (3)

For a simply supported beam, the deflection uðx; tÞ and acceleration €uðx; tÞ of the beam can be
expressed in terms of the vibration mode shapes as follows:

uðx; tÞ ¼
X1
n¼1

qnðtÞ sin
npx

L
; €uðx; tÞ ¼

X1
n¼1

€qnðtÞ sin
npx

L
, (4a,b)

where qnðtÞ denotes the generalized coordinate associated with the nth vibration shape of the
beam. By substituting the displacement uðx; tÞ of Eq. (4a) into Eq. (1), multiplying both sides of
the equation by the shape function sinðnpx=LÞ, and then integrating with respect to the beam axis
x over the length L, one can formulate the nth generalized equation of motion of the beam as

€qn þ 2xnon _qn þ o2nqn ¼
2p

mL

XNþK�1

k¼1

½ f nðt � tk; v;LÞ�,
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f nðt � tk; v;LÞ ¼ sinOnðt � tkÞ 	 Hðt � tkÞ

þ ð�1Þnþ1 sinOnðt � tk � L=vÞ 	 Hðt � tk � L=vÞ, ð5a;bÞ

where xn is the modal damping ratio, on is the nth vibration frequency of the beam,

on ¼
np
L

� �2 ffiffiffiffiffiffi
EI

m

r
, (6)

Onð¼ npv=LÞ is the driving frequency, and f nðt � tk; v; tÞ is the generalized forcing function of the
kth moving load acting on the beam.
3. Acceleration response of the beam

Before working on the solution to the generalized coordinate qnðtÞ in Eq. (5), let us consider the
simplest case when the beam is subjected to the passage of a single moving load. For this case, the
equation of motion in Eq. (5) reduces to

€qn þ 2xnon _qn þ o2nqn ¼
2p

mL
sin

npvt

L
; 0pvtpL. (7)

By Duhamel’s integral, the response of the generalized coordinate qnðtÞ can be directly derived
from Eq. (7) as [8, p. 76]

qnðtÞ ¼
2p=ðmLo2nÞ

ð1� S2nÞ
2
þ ð2xnSnÞ

2
ð1� S2nÞ sinOnt � 2xnSn cosont

8><
>:

þSne
�xnont 2xn cosodnt �

1� S2n � 2x
2
nffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2n

q
0
B@

1
CA sinodnt

2
64

3
75
9>=
>;, ð8aÞ

where Sn ¼ On=on ¼ speed parameter, and odn ¼ on

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
¼ damped frequency. The accel-

eration response can be obtained by differentiating the generalized coordinate qn in Eq. (8a) twice
with respect to time, that is,

€qnðtÞ ¼
�2p=ðmLÞ

ð1� S2nÞ
2
þ ð2xnSnÞ

2
S2n½ð1� S2nÞ sinOnt � 2xnSn cosont�

8><
>:

þ Snð1� 2x
2
nÞe

�xnont 2xn cosodnt �
1� S2n � 2x

2
nffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2n

q sinodnt

2
64

3
75

�2Snxn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2n

q
e�xnont 2xn sinodnt þ

1� S2n � 2x
2
nffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2n

q cosodnt

2
64

3
75
9>=
>;. ð8bÞ



ARTICLE IN PRESS

J.D. Yau, Y.B. Yang / Journal of Sound and Vibration 289 (2006) 210–228214
In this study, only the beams with light damping ðxno0:03Þ are considered, which implies that the
terms involving x2n;S

3
n and xnSn in Eqs. (8) can be neglected and that the damped frequency odn is

approximately equal to the natural frequency on [5]. As a result, the dynamic responses in Eqs.
(8a) and (8b) can be approximated as

qnðtÞ �
1

n4
	
2pL3

p4EI

sinOnt � Sne
�xnont sinont

1� S2n
,

€qnðtÞ �
�2p

mL

S2n sinOnt � Sne
�xnont sinont

1� S2n

¼
1

n
	

2pv

p
ffiffiffiffiffiffiffiffiffiffi
mEI

p
�Sn sinOnt þ e�xnont sinont

1� S2n
. ð9a;bÞ

By comparing Eq. (9a) with Eq. (9b), one observes that the contribution of higher modes
should be considered in computing the acceleration of the beam, because the acceleration
amplitude decreases less rapidly than the displacement amplitude as the mode number n increases,
due to the difference in the power of n in the two equations.
Next, consider the general case when a series of equidistant loads move over the beam at a

constant speed v, and assume that there are K wheel loads simultaneously acting on the beam, as
shown in Fig. 1. When the Nth (leading) load and its following ðK � 1Þ loads are traversing the
beam, the generalized acceleration response €qnðtÞ induced on the beam can be obtained from Eq.
(9b) by the method of superposition as follows:

€qnðtÞ ’
2p

mL

Qnðv; tÞ

1� S2n
, (10a)

where

Qnðv; tÞ ¼ �
XNþK�1

k¼N

½Anðv; t � tkÞHðt � tkÞ�

 !
�

XN�1

k¼1

½Anðv; t � tkÞHðt � tkÞ

 

þð�1Þnþ1Anðv; t � tk � L=vÞHðt � tk � L=vÞ�

!
,

Anðv; tÞ ¼ ½S2n sinOnt � Sne
�xnont sinont�, (10b,c)

in which the unit step function Hðt � tkÞ is used to signify the arrival of the kth moving load on
the beam, and the function Hðt � tk � L=vÞ the departure of the kth moving load from the beam.
Here, the first term with the summation from k ¼ N to N þ K � 1 represents the effect of the K
moving loads simultaneously acting on the beam, and the second term with the summation from
k ¼ 1 to N � 1 the effect of the first ðN � 1Þmoving loads that have passed the beam. Substituting
Eq. (10) into Eq. (4b) yields the acceleration of the beam as follows:

€uðx; tÞ ¼
2p

mL

X
n¼1

Qnðv; tÞ

1� S2n
sin

npx

L
. (11)
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This equation represents exactly the general solution for the acceleration of a simple beam due to
a series of equally spaced moving loads. To identify the resonant condition for the beam, we need
to rearrange the acceleration response in Eq. (11) through some mathematical manipulations. In
the following section, the resonant response of the beam will be derived.
4. Phenomenon of resonance

In Refs. [3,5], the authors have derived the resonant conditions for the deflection response of
simple beams subjected to a series of moving loads. To analytically derive the dominant condition
of resonance from the acceleration response in Eq. (10), let us first neglect the effect of damping of
the beam. For this case, the acceleration factor Anðv; tÞ in Eq. (10c) reduces to

Anðv; tÞ ¼ ½S2n sinOnt � Sn sinont�. (12)

As depicted in Fig. 1, when the Nth load and its following ðK � 1Þ loads are simultaneously
moving over the beam, i.e., when tNototNþK�1 þ L=v, by substituting Eq. (12) into Eq. (10a),
the generalized acceleration €qnðtÞ can be expressed as follows:

€qnðtÞ ¼
2p

mL

Sn

1� S2n

XNþK�1

k¼N

½�Sn sinOnðt � tkÞ þ sinonðt � tkÞ�Hðt � tkÞ

 !(

þ
XN�1

k¼1

½ð�Sn sinOnðt � tkÞ þ sinonðt � tkÞÞHðt � tkÞ þ ð�1Þnþ1

 

	ð�Sn sinOnðt � tk � L=vÞ þ sinonðt � tk � L=vÞÞHðt � tk � L=vÞ�

!)
. ð13Þ

As was stated previously, the first term with the summation from k ¼ N to N þ K � 1 represents
the effect of the K moving loads simultaneously acting on the beam, and the second term with the
summation from k ¼ 1 to N � 1 the effect of the first ðN � 1Þ moving loads that have passed the
beam. By using the following formulas for trigonometric functions:

sinOnðt � tkÞ þ ð�1Þnþ1 sinOnðt � tk � L=vÞ ¼ 0,

sinonðt � tkÞ þ ð�1Þnþ1 sinon t � tk �
L

v

� �
¼

2 cos
onL

2v

� �
sin on t � tk �

L

2v

� � !
; n ¼ odd;

2 sin
onL

2v

� �
cos on t � tk �

L

2v

� � !
; n ¼ even

8>>><
>>>:

(14a,b)

and

XN�1

k¼1

sinon t � tk �
L

2v

� �
¼ sinon t �

L

2v

� �
þ sinon t �

tN þ L=v

2

� �
sin ðN � 2Þ ond

2v

" #
sinðond=2vÞ

,
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XN�1

k¼1

coson t � tk �
L

2v

� �
¼
XN�1

k¼1

sin on t � tk �
L

2v

� �
þ

p
2

 !

¼ coson t �
L

2v

� �
þ coson t �

tN þ L=v

2

� �
sin ðN � 2Þ ond

2v

" #
sinðond=2vÞ

, ð14c;dÞ

the generalized acceleration €qnðtÞ in Eq. (13) can be manipulated into a compact form as

€qnðtÞ ¼
2p

mL

Sn

1� S2n

XNþK�1

k¼N

½�Sn sinOnðt � tkÞ þ sinonðt � tkÞ�Hðt � tkÞ

 !(

þ 2Dnðv; tÞ 	 Hðt � tN�1 � L=vÞ

)
, ð15aÞ

where

Dnðv; tÞ ¼

cos
onL

2v
sinon t �

L

2v

� �
þ sinon t �

L

2v
�

tN

2

� �
sin ðN � 2Þ ond

2v

" #
sinðond=2vÞ

" #
; n ¼ odd;

sin
onL

2v
coson t �

L

2v

� �
þ coson t �

L

2v
�

tN

2

� �
sin ðN � 2Þ ond

2v

" #
sinðond=2vÞ

" #
; n ¼ even:

8>>>>><
>>>>>:

(15b)

As can be seen from Eq. (15b), for any vibration modes considered, the expression of €qnðtÞ will
reduce to an indeterminate form 0=0 when the denominator sinðond=2vÞ equals zero, i.e., when
ond=2v ¼ jp; j ¼ 1; 2; 3 . . . ; where j represents the number of complete oscillation cycles for the
nth mode of the beam to vibrate during the passage of two adjacent loads [7]. This is exactly the
condition for the jth resonance of the nth mode to be excited. Let us denote the corresponding
resonant speed as vr;n, where the subscript r; n means the rth resonance of the nth vibration mode
to be excited. As for investigation of the resonant phenomenon, a detailed study will be presented
in Section 4.1.
Consequently, introducing Eq. (15) into Eq. (11) leads to the acceleration of the beam:

€uðx; tÞ ¼
2p

mL

X
n¼1

sin
npx

L

Sn

1� S2n

XNþK�1

k¼N

½�Sn sinOnðt � tkÞ þ sinonðt � tkÞ�Hðt � tkÞ

 !"(

þ 2Dnðv; tÞ 	 Hðt � tN�1 � L=vÞ

#)
. ð16Þ

This is a general expression for the acceleration of the beam induced by successively moving loads.
It is featured by the fact that the contribution of higher modes of vibration of the beam is duly
taken into account, which may be important in computation of the maximum acceleration of the
beam.
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4.1. The first resonance associated with the fundamental mode

Consider the most popular case when the first vibration mode of the beam is excited, i.e., when
sinðo1d=2vÞ ¼ 0 or o1d=2v ¼ jp. Here, the condition j ¼ 1 means that the first characteristic
frequency, i.e., v=d, of the successive moving loads coincides with the fundamental frequency
o1=2p of the beam. Correspondingly, the first resonant speed is vr;1 ¼ o1d=2p. As can be seen, the
shorter the interval d of the moving loads, the smaller the resonant speed will be induced. By
substituting vr;1 into the denominator in Eq. (15b) and by L’Hospital’s rule, the following identity
can be established:

sin
ond

2vr;1
¼ 0 )

ond

2vr;1
¼ n2p,

lim
sinðond

2vr;1
Þ!0

sin½ðN � 2Þond=2vr;1�

sinðond=2vr;1Þ
¼ N � 2. (17a,b)

Thus, the first resonant acceleration of the first mode of the beam can be expressed as

€ur;1ðx; tÞ ¼
2p

mL

X
n¼1

sin
npx

L

� � Sn;r1

1� S2n;r1

"(

	
XNþK�1

k¼N

�Sn;r1 sinOnðt � tkÞ þ sinonðt � tkÞ
& '

Hðt � tkÞ

 !

þ 2Dn;r1ðvr;1; tÞ 	 Hðt � tN�1 � L=vr;1Þ

#)
, ð18aÞ

where

Sn;r1 ¼
npvr;1

onL
¼

d

2nL
,

Dn;r1ðvr;1; tÞ ¼

ðN � 1Þ cos
onL

2vr;1
sinon t �

L

2vr;1

� �
; n ¼ odd;

ðN � 1Þ sin
onL

2vr;1
coson t �

L

2vr;1

� �
; n ¼ even:

8>>><
>>>:

(18b,c)

The preceding equations indicate that once the first mode of the beam is excited, the other higher
modes will be developed as well on the beam, as implied by ðN � 1Þ in Eq. (18c). As indicated by
Eq. (18a), higher mode shapes can influence the maximum acceleration of the beam through the
function sinðnpx=LÞ with nX2, resulting in some resonant peaks on the response along the beam
axis. This explains the reason why the critical position of the maximum acceleration of an
undamped beam subjected to successive moving loads may occur at position other than the mid-
point. On the other hand, the contribution of higher modes to the acceleration of the beam may
gradually decay because the resonant speed parameter Sn;r1 ¼ d=2nL in the numerator becomes
smaller for larger mode number.
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4.2. The second resonance associated with the second mode

Next, let us consider a relatively rare case when the second mode of the beam is excited, or when
o2d=2vr;2 ¼ jp as implied by the condition sinðo2d=2vÞ ¼ 0. For this case, one can find the
following relations:

ond

2vr;2
¼

n2o2d
4	 2vr;2

¼
n2jp
4
,

sin ðN � 2Þ ond
2vr;2

h i
sin ond

2vr;2

******
ond
2vr;2

¼
n2 jp
4

¼
sin½ðN � 2Þjn2p=4�
sinð jn2p=4Þ

¼

sin½ðN � 2Þjp=4�
sinð jp=4Þ

; n ¼ odd;

N � 2; n ¼ even:

8<
: (19a,b)

For most commercial trains in operation, the first resonant speed of the second mode, as implied
by vr;2 ¼ o2d=2jp with j ¼ 1, can hardly be reached, as it is too high. Therefore, only the second
resonant speed of the second mode, i.e., vr;2 ¼ o2d=2jp with j ¼ 2, will be considered herein.
Consequently, Eq. (19b) becomes

sin½ðN � 2Þond=2vr;2�

sin ond
2vr;2

 !
ond
2vr;2

¼
n2 jp
4 ; j¼2

¼
� sinðNp=2Þ; n ¼ odd;

N � 2; n ¼ even;

(
(20a)

where

vr;2 ¼
o2d
4p
. (20b)

Using Eqs. (20a) and (20b), one can establish the following relation:

sinon t �
L

2vr;2

� �
þ sinon t �

L

2vr;2
�

tN

2

� �
sinððN � 2Þond=2vr;2Þ

sinðond=2vr;2Þ

¼
ð1� sin2ðNp=2ÞÞ sinonðt � L=2vr;2Þ; n ¼ odd;

ðN � 1Þ sinonðt � L=2vr;2Þ; n ¼ even;

8<
: ð20cÞ

where 1� sin2ðNp=2Þ is equal to ½1þ ð�1ÞN �=2. Thus, the acceleration of the beam associated
with the second resonance of the second mode can be given as

€ur;2ðx; tÞ ¼
2p

mL

X
n¼1

sin
npx

L

� � Sn;r2

1� S2n;r2

XNþK�1

k¼N

ð�Sn;r2 sinOnðt � tkÞ þ sinonðt � tkÞÞ

"(

	 Hðt � tkÞ þ 2Dn;r2ðvr;2; tÞ 	 Hðt � tN�1 � L=vr;2Þ

#)
, ð21aÞ

where

Sn;r2 ¼
npvr;2

onL
¼

d

nL
,
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Dn;r2ðvr;2; tÞ ¼

½1þ ð�1ÞNþ1
�

2
cos

onL

2vr;2
sinon t �

L

2vr;2

� �
; n ¼ odd;

ðN � 1Þ sin
onL

2vr;2
coson t �

L

2vr;2

� �
; n ¼ even:

8>>><
>>>:

(21b,c)

As indicated in Eq. (21c), whenever the running speed of the successive moving loads equals the
resonant speed vr;2 given in Eq. (20b), the contribution to the acceleration comes mainly from the
even vibration modes of the beam, which increases as there are more loads passing the beam.
Correspondingly, the maximum acceleration of the beam may not occur at the mid-point. As for
the odd modes, according to Eq. (21c), their contributions to the acceleration do not increase as
there are more loads passing the beam.
Similarly, following the same procedure as outlined above for finding the resonant speeds, one

can also formulate the resonant acceleration responses of the beam for the case when any of the
higher modes is to be excited. However, the effect of damping has not yet been considered in the
derivation. The purpose of the following section is to investigate such an effect on the resonant
acceleration response of the beam.
5. Effect of damping

Consider the case that when the running speed of moving loads meets with the first
resonant speed of the fundamental mode of the beam, i.e., when vr;1 ¼ o1d=2p and
ond=vr;1 ¼ 2n

2p. As shown in Fig. 1, when the Nth moving load travels over a distance
vtE from the start end of the beam at the time t ¼ tE þ tN or t ¼ tE þ ðN � 1Þd=vr;1, by the
equality of onðt � tkÞ ¼ ontE þ ðN � kÞond=vr;1 ¼ ontE þ 2n2pðN � kÞ, one can derive the
following relations:

sinOnðt � tkÞ þ ð�1Þnþ1 sinOnðt � tk � L=vr;1Þ ¼ 0; 0ptptN ,

sinonðt � tkÞ ¼ sinontE ,

sinonðt � tk � L=vr;1Þ ¼ sinonðtE � L=vr;1Þ. (22a2c)

By inserting the preceding relations with the resonant speed of vr;1 into the response factor Qnðv; tÞ
in Eq. (10b), considering that the beam is lightly damped with constant modal damping ratios,
i.e., xn ¼ x, one can express the resonant response factor Qn;resðvr;1; tÞ as

Qn;resðvr;1; tEÞ ¼ Sn;r1

XK

k¼1

½�Sn;r1 sinOnðtE þ tkÞ þ e
�xonðtEþtkÞ sinonðtE þ tkÞ�HðtE þ tkÞ

þ Sn;r1e
�xontN

XN�1

k¼1

exontk

 !
	 e�xontE ½sinontE þ ð�1Þnþ1exonL=vr;1

	 sinonðtE � L=vr;1Þ�HðtE � ðL � dÞ=vr;1Þ, ð23Þ

where the first term with HðtE þ tkÞ indicates the response of the beam induced by the Nth
moving load and its following ðK � 1Þ loads acting on the beam, and the second term with
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HðtE � ðL � dÞ=vr;1Þ represents the residual vibration of the beam due to the first ðN � 1Þ moving
loads that have left the beam. By using the following series sum [5]:

Enðx; vrÞ ¼ e
�xontN

XN�1

k¼1

exontk ¼ e�xonðN�1Þd=vr

XN�1

k¼1

exonðk�1Þd=vr ¼
1� e�ðN�1Þxond=vr

exond=vr � 1
, (24)

the resonant response factor Qn;resðvr;1; tÞ in Eq. (23) can be transformed into

Qn;resðvr;1; tÞ ¼ Sn;r1fD1nðx; vr;1Þ þ Enðx; vr;1Þe
�xontE 	 ½sinontE

þ ð�1Þnþ1exonL=vr;1 sinon tE � L=vr;1

" #
� 	 HðtE � ðL � dÞ=vr;1Þg, ð25Þ

where

D1nðx; vr;1Þ ¼
XK

k¼1

½�Sn;r1 sinOnðtE þ tkÞ þ e
�xonðtEþtkÞ sinonðtE þ tkÞ�HðtE þ tkÞ. (26)

Substitution of Eq. (25) into Eq. (10a) yields the acceleration of the beam as

€ur;1ðx; tÞ ¼
2p

mL

X
n¼1

sin
npx

L

� � Sn;r1

1� S2n;r1
fD1nðx; vr;1Þ þ Enðx; vr;1Þe

�xontE

	 ½sinontE þ ð�1Þnþ1exonL=vr;1 sinonðtE � L=vr;1Þ�HðtE � ðL � dÞ=vr;1Þg. ð27Þ

This equation represents exactly the resonant acceleration response of a simple beam with light
damping due to successive moving loads at the resonant speed vr;1. On the other hand, by letting
the damping ratio x become zero, one gets Enð0; vr;1Þ ¼ ðN � 1Þ by applying L’Hospital’s rule to
Eq. (24). By the relations of Enð0; vr;1Þ and tE ¼ t � tN , it can be shown that the acceleration
response in Eq. (27) reduces to that in Eq. (18).
Next, let us consider the special case when the second resonance of the second vibration mode is

excited. This means that the resonant speed vr;2 is equal to o2d=4p and that ond=vr;2 ¼ n2p from
Eq. (20b). When the Nth load and its following ðK � 1Þ moving loads are simultaneously acting
on the beam at the time t ¼ tE þ tN or t ¼ tE þ ðN � 1Þd=vr;2, by the equality of
onðt � tkÞ ¼ ontE þ ðN � kÞond=vr;2 ¼ ontE þ n2pðN � kÞ, one can derive the following relations:

sinOnðt � tkÞ þ ð�1Þnþ1 sinOnðt � tk � L=vr;2Þ ¼ 0; 0ptptN ,

sinonðt � tkÞ ¼ sin½ontE þ n2pðN � kÞ� ¼
ð�1ÞN�k sinontE ; n ¼ odd;

sinontE ; n ¼ even;

(

sinonðt � tk � L=vr;2Þ ¼
ð�1ÞN�k sinonðtE � L=vr;2Þ; n ¼ odd;

sinonðtE � L=vr;2Þ; n ¼ even:

(
(28a2c)

The resonant acceleration response factor Qn;resðvr;2; tEÞ can be written as

Qn;resðvr;2; tEÞ ¼ Sn;r2½D1nðx; vr;2Þ þ e
�xontE D2nðx; vr;2ÞHðtE � ðL � dÞ=vr;2Þ�, (29)
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where

D2nðx; vr;2Þ ¼

½sinontE þ exonL=vr;2 sinonðtE � L=vr;2Þ� 	 e
�xotN

PN�1

k¼1

½ð�1ÞN�kexontk �; n ¼ odd;

½sinontE � exonL=vr;2 sinonðtE � L=vr;2Þ� 	 e
�xotN

PN�1

k¼1

exontk ; n ¼ even:

8>>>><
>>>>:

(30)

By the expression for Enðx; vr;2Þ in Eq. (24) and the following series sum:

Ēnðx; vrÞ ¼ e
�xontN

XN�1

k¼1

½ð�1ÞN�kexontk � ¼
1þ ð�1ÞN 	 e�ðN�1Þxond=vr

�exond=vr � 1
, (31)

the factor D2nðx; vr;2Þ in Eq. (30) can be expressed as

D2nðx; vr;2Þ ¼
Ēnðx; vr;2Þ sinontE þ exonL=vr;2 sinon tE � L=vr;2

" #& '
; n ¼ odd;

Enðx; vr;2Þ½sinontE � exonL=vr;2 sinonðtE � L=vr;2Þ�; n ¼ even:

(
(32)

It follows that the resonant acceleration response for the simply supported beam under the action
of successive moving loads at the resonant speed vr;2 can be expressed as

€ur;2ðx; tÞ �
2p

mL

X
n¼1

sin
npx

L

� � Sn

1� S2n
½D1nðx; vr;2ÞHðtE þ tkÞ

(

þ e�xontE D2nðx; vr;2ÞHðtE � ðL � dÞ=vr;2Þ�

)
. ð33Þ

For the special case of zero damping, i.e., for x ¼ 0, one can get Ēnð0; vr;2Þ ¼ �½1þ ð�1ÞN �=2 and
Enð0; vr;2Þ ¼ ðN � 1Þ. Accordingly, the resonant acceleration response of the beam in Eq. (33) can
be reduced to that in Eq. (21), where it is noted that tE ¼ t � tN .
In addition, by considering the effect of damping ratio x in computing the acceleration response

of the beam, Eqs. (27) and (33) show that the contributions of higher modes to the beam
acceleration quickly decrease owing to the presence of e�xontE ð¼ e�n2xontE Þ, that is, the higher the
mode number n, the faster the decay of the exponential factor e�xontE is. A detailed illustration of
the effect of damping on the acceleration response of the beam will be illustrated in the section to
follow.
6. Illustrative examples

As shown in Fig. 1, a simple beam is subjected to a series of equidistant moving loads. The
properties of the beam, assumed to be made of steel, have been listed in Table 1. Three sets of
moving loads, T-24, T-18, and T-12, each with identical intervals, are assumed, for which the axle
interval d, weight of each load p, total number ðN þ K � 1Þ of loads, and the maximum number K

of the wheel loads allowed to stay on the beam were listed in Table 2. To compute the acceleration
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Table 1

Properties of beam

L (m) m (t/m) EI ðkNm2Þ o1
a (rad/s)

40 30 4	 108 22.5

ao1 ¼ ðp=LÞ2
ffiffiffiffiffiffiffiffiffiffiffiffi
EI=m

p
.

Table 2

Properties of various types of moving loads

Train type N þ K � 1 K d (m) p (kN) vr;1 (km/h) vr;2 (km/h)

T-24 10 2 24 360 309 618

T-18 14 3 18 300 232 464

T-14 18 3 14 210 180 360
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response of the beam subjected to the moving loads, the first 20 vibration modes will be
considered in the following examples.

6.1. Phenomena of resonance and sub-resonance

In order to illustrate the phenomena of resonance and sub-resonance on the beam due to
successive moving loads, let us first neglect the effect of damping of the beam and consider first the
moving loads of the T-24 type over the beam. Fig. 2 shows the time histories of the mid-point
deflection of the beam subjected to the moving loads at the resonant speeds of vr;1 and 0:5vr;1. As
can be seen, both responses continue to build up as there are more loads passing the beam.
Moreover, the mid-point deflection response shows a single cycle of vibration between the passage
duration Dt of two adjacent moving loads, where Dt ¼ tN � tN�1 ¼ d=v, for the resonant speed
vr;1 and two cycles of vibration for the speed vr;1=2. These are characteristic of the resonance and
sub-resonance of the first mode of the beam due to a series of equidistant moving loads.

6.2. Maximum acceleration of an undamped beam due to various moving loads

The speed parameter, which is dimensionless and defined as S ¼ pv=o1L, is a useful parameter
for studying the dynamic responses of beams subjected to moving loads of various speeds. If the
ratio of d=L is given for a problem, then the resonant speed of the moving loads over the beam
can be deduced from the non-dimensional resonant speed parameter Sn;r presented in Section 4.
For the present purposes, the three sets of moving loads, i.e., T-24, T-18, and T-14, as specified in
Table 2, for moving loads of long, medium, and short axle distances, respectively, will be
employed to investigate the maximum acceleration responses of an undamped beam. By letting
each set of moving loads traverse the beam at different speeds, the maximum acceleration amax has
been plotted against the speed parameter S and the position x=L in Figs. 3(a)–(c) for each set of
moving loads. As can be seen, whenever the speed parameter is equal to any of the resonant speed
parameters associated with the vibration modes to be excited, that is, when the running speed of
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Fig. 2. Time history responses at resonant speeds.
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the moving loads coincides with any of the resonant speeds of the vibration modes, the maximum
acceleration responses of the beam will be significantly amplified. Moreover, the shorter the
interval of the moving loads, the easier the resonance will be induced. Unlike the case for the
maximum deflection [3], the maximum acceleration of the beam need not necessarily occur at the
mid-point, as indicated in Fig. 3(b) for the T-18 moving loads. Further studies will be presented
later on concerning the occurrence of resonance at positions beyond the mid-point of the beam.

6.3. Effect of higher modes

Consider first the acceleration response of the beam subjected to the T-24 moving loads at the
resonant speed vr ¼ ond=2jp derived from Section 4. Correspondingly, the resonant speed
parameters of the vibration modes that may be excited can be deduced as follows:

Sr ¼
pvr

o1L
¼

p	 ðond=2jpÞ
o1L

¼
n2d

2jL
, (34)

where the number of ð j; nÞ represent the jth resonance associated with the nth mode of the simple
beam. The maximum acceleration amax solved along the axis x=L of the beam have been plotted
against the resonant speed parameter in Fig. 4(a). This figure indicates that for the undamped
beam considered, as the first resonance of the first mode is excited, the resonance associated with
other higher modes will be excited as well, resulting in some secondary peaks on the acceleration
response curve. Because of this, the maximum acceleration does not occur at the mid-point of the
beam. For instance, the resonant speed parameter of the sixth resonance ð j ¼ 6Þ of the third mode
ðn ¼ 3Þ is 32 	 24=ð2	 6	 40Þ ¼ 0:45. As indicated by the dashed line in Fig. 4(a), there exist
three response peaks for the third mode resonance at the resonant speed parameter Sr ¼ 0:45
under the T-24 moving loads. Thus, it is possible to count the mode number from the number of
peaks appearing on the acceleration response curve. Similar observations can be made from Figs.
4(b) and (c) for the beam under the action of the T-18 and T-14 moving loads at their resonant
speeds, respectively. Noteworthy is the fact that the maximum acceleration of the beam for the
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1st mode

3rd mode

(a) 

1st mode

2nd mode

(b) 

1st mode

2nd mode

(c) 

Fig. 3. amax–S–x=L diagram: (a) d=L ¼ 0:6; (b) d=L ¼ 0:45 and (c) d=L ¼ 0.35.
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second resonance of the second mode due to the T-18 moving loads, as indicated in Fig. 4(b), is
larger than that of the first resonance of the first mode, for which the reason will be given in the
following.
As indicated in Figs. 4(a)–(c), once the nth mode of the beam is excited, the number

of peak responses of the maximum acceleration along the beam is equal to the mode
number of the vibration mode excited. From Eqs. (18) and (21), it can be observed that under the
condition of resonance, the residual responses are proportional to the number of loads passing the
beam, i.e., ðN � 1Þ, as indicated in Eqs. (18c) and (21c). For the case with sufficiently large
value of N, the maximum response of the beam may be governed by the residual response.
For the extreme case when the number ðN � 1Þ of moving loads passing the beam
under resonance is so large that the acceleration of the beam induced by the moving loads
directly acting on the beam can be neglected, as represented by the term withHðt � tkÞ in Eqs. (18)
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Fig. 4. Maximum acceleration of an undamped beam to various types of moving loads at resonance: (a) T-24; (b) T-18

and (c) T-14.
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and (21), the maximum acceleration response of the beam is governed by the vibration mode that
has been excited.
It follows that if the first resonant acceleration response of the first mode is considered, the mid-

point acceleration response of the beam as given in Eq. (18) can be approximated as

€ur;1
L

2
; t

� �
’
2p

mL

S1;r1

1� S21;r1
	 2ðN � 1Þ cos

o1L
2vr;1

sino1 t �
L

2vr;1

� � !
	 H t � tN�1 �

L

vr;1

� �
, (35)

where Sr;1 ¼ d=2L and vr;1 ¼ o1d=2p. Similarly, if the second resonance of the second mode is
excited, the maximum acceleration amplitude will occur at the first or third quarter-points of the
beam. Consider the resonant acceleration at the first quarter-point of the beam. The acceleration
response for the second mode as given in Eq. (21) can be approximated as

€ur;2
L

4
; t

� �
’
2p

mL

S2;r2

1� S22;r2
	 2ðN � 1Þ sin

o2L
2vr;2

coso2 t �
L

2vr;2

� � !
	 H t � tN�1 �

L

vr;2

� �
, (36)

where Sr;2 ¼ d=2L and vr;2 ¼ o2d=4p ¼ 2vr;1.
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Let us consider the condition when the mid-point maximum acceleration is smaller than the
quarter-point maximum acceleration, i.e., €ur;1ðL=2; tÞmaxo €ur;2ðL=4; tÞmax, or

S1;r1

1� S21;r1
	 cos

o1L
2vr;1

*****
*****o S2;r2

1� S22;r2
	 sin

o2L
2vr;2

*****
*****. (37)

Substituting the relations Sr;1 ¼ Sr;2 ¼ d=2L; vr;1 ¼ o1d=2p and vr;2 ¼ 2vr;1 mentioned earlier into
Eq. (37), one can get the following relation:

cos
Lp
d

****
****o sin

2Lp
d

****
****. (38)

The preceding equation can be solved to yield the following inequality:

1

2J þ 1=6
4

d

L
4

1

2J þ 5=6
, (39)

where J is a positive integer. For a beam simultaneously acted upon by multiple moving loads,
namely, for beams that are not short. By letting J ¼ 1, one can get 0:353od=Lo0:462. Once the
length ratio of d=L is located within this range, the maximum acceleration of the mid-point of the
beam will be smaller than that of the quarter-span. In the present study, the length ratio d=L of
the interval of the T-18 moving loads to the span of the beam is 18=40 ¼ 0:45, which satisfies the
condition derived above from Eq. (39). Besides, the ratio d=L for the T-24 and T-14 moving loads
are 0.6 and 0.35, respectively. Both are not within the range of 0:353od=Lo0:462. Therefore, the
dominant mode of the maximum acceleration of the beam to moving loads is the fundamental
mode.

6.4. Effect of damping

No consideration was made for damping of the beam in Section 6.3. Once the damping of the
beam is considered, all the resonant peaks of maximum acceleration will be significantly reduced,
especially those of the higher modes, and the maximum acceleration will occur only at the mid-
point of the beam, as indicated in Fig. 5(a). An observation from the acceleration responses
shown in Figs. 5(a)–(c) is that damping plays an important role in reducing the resonant
acceleration response of the beam to moving loads. Since the structural damping can quickly
damp out the contributions of higher modes to the acceleration of the beam, the maximum
acceleration response of the beam is generally dominated by the fundamental mode in most
practical situations.
7. Concluding remarks

In this paper, the acceleration response of a simple beam subjected to successive moving loads
with identical intervals has been studied by the mode superposition method. The analysis results
indicate that the contributions of higher modes to the beam acceleration cannot be neglected for
beams with light damping. In particular, when the characteristic frequency of the moving loads
coincides with any of the resonant speeds associated with the higher mode frequencies, resonance
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Fig. 5. Maximum acceleration of a damped beam to various types of moving loads at resonance: (a) T-24; (b) T-18 and

(c) T-14.
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may be excited for those frequencies on the beam. Because of this, the maximum acceleration of
the beam need not occur at the mid-point.
The location of maximum acceleration on the beam depends on the vibration mode that has

been excited. In this paper, the range of car/span length ratio is identified for the case where the
maximum acceleration of the quarter-point is larger than that of the mid-point. For a damped
beam subjected to moving loads at resonant speeds, the contributions of higher modes to the
acceleration response can be neglected as they are quickly damped out. Therefore, increasing the
structural damping of a ballasted bridge can help reduce the maximum acceleration on the bridge
deck, which can be achieved through installation of additional damper devices to the bridge or by
using materials with higher damping ratios.
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